HD9022

HD9022
 CONFIGURABLE MICROPROCESSOR INDICATOR, REGULATOR Pt100 4 WIRES CURRENT OR VOLTAGE INPUT

The microprocessor-controlled panel instrument HD9022 is an indicator with alarm thresholds that may be programmed and configured by the user. At input it accepts signals arriving from 2 or 3 wire transmitters with $0 \div 1 \mathrm{~V}, 0 \div 10 \mathrm{~V}$ voltage or $0 \div 20 \mathrm{~mA}, 4 \div 20 \mathrm{~mA}$ current signals, or 4 wires Pt 100 sensors. Configuration is always completely present in the instrument, no additional cards are required. The choice for the configuration of the input signals is made by means of the keyboard on the front of the instrument. The dimensions of the instrument are $96 \times 48 \mathrm{~mm}$ with depth 145 mm in conformity with DIN 45700. The mode of operation of the HD9022 is chosen depending on the application, configuring the instrument with the keyboard. The instrument may also be reconfigured with absolute simplicity on the field in order to adapt it to changes in processing requirements.

The configuration involves the input, the scale range, the set point and the auxiliary outputs.

Applications

Typical applications are the display of signals sent by transmitters which may concern temperature, humidity, pressure, speed, capacity, level, force, etc., for the most varied industrial sectors, operating machines and automated systems.

Characteristics

- Set point configurable from -9999 to +19999.
- Indication provided by red leds with seven $1 / 2$ inch segments.
- Separate terminals for voltage input $0 \div 1 / 0 \div 10 \mathrm{~V}$, current input $0 \div 20$ / $4 \div 20 \mathrm{~mA}$ and Pt100 input $\left(-200 \div+800^{\circ} \mathrm{C}\right)$.
- The instrument has an auxiliary power supply output :-5 Vdc max 10 mA
and +15 Vdc non stabilized $\max 40 \mathrm{~mA}$ for the possible supply of 2-wire transmitters.
$-R_{\text {IIN }}=25 \Omega, R_{\text {VIN }}=200 \mathrm{k} \Omega$.
- Instrument accuracy: $\pm 0.1 \%$ Rdg ± 1 Digit.
- A/D converter resolution: $0.05 \mathrm{mV} /$ Digit, $1 \mu \mathrm{~A} /$ Digit.
- Functions: One relay with independent exchange contact for output HI (SP1, SP2).

One relay with independent exchange contact for output LO (SP3, SP4).
One relay with maximum or minimum alarm closing contact (L max, L min.) ALARM
Resistive relay contacts 3A/220V 50Hz.

- Instrument working temperature: (electronic componentry) $5^{\circ} \mathrm{C} \div 50^{\circ} \mathrm{C}$.
- Power supply: $12 \div 24 \mathrm{Vac} / \mathrm{Vdc}(110 \div 240 \mathrm{Vac} / \mathrm{Vdc}$ on request).
- Instrument absorption: 5VA.

Minimum power of the supply transformer: 20VA.
Function of the keys on the front panel, the display and the LEDs
1 Digital display. During programming the following wording appears: FO,
F1, F2, F3, F4, F5, F6, F7, F8, SP1, SP2, SP3, SP4, S10.
2 State indicator of HI relay.
3 State indicator of LO relay.
4 State indicator of ALARM relay.
5 Decimal point.

Sequential programming of working parameters
6 PROG Every time this key is pressed the program moves one step forward (F0, F1, F2, F3, F4, F5, F6, F7, F8, SP1, SP2, SP3, SP4, S10).
7 ENTER When this key is pressed during programming, the value of the selected variable, which can be modified by the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys, is displayed; pressing once again ENTER confirms the stored value.
8 - Pressing this key during programming increases the value indicated on the display; in F2, it moves the decimal point towards the right. In normal operation it flashes to indicate the value in Volts, mA or Pt100 corresponding to the input; with a second impulse it returns to normal operation.
9 Pressing this key during programming decreases the value indicated on the display; in F2, it moves the decimal point towards the left. In normal operation it flashes to indicate the value in Volts, mA or temperature corresponding to the input; with a second impulse it returns to normal operation.

Configuration of the HD9022 panel indicator

1) Supply power to the instrument.
2) The instrument performs an internal check, the wording C.E.I. appears for a few seconds followed by a number at random.
3) Press PROG and the message FO appears.
4) Press PROG and the message F1 appears.
5) Press ENTER and the symbol U, A or Pt appears. Using the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ buttons, choose the input for voltage: U, current: A or Pt100: Pt signals. Press ENTER to confirm.
6) Press PROG and the message F2 appears; press ENTER; with the $\boldsymbol{\Delta} \boldsymbol{k}$ keys, set the decimal point in the desired position.

Press ENTER to confirm.
7) Press PROG and the message F3 appears; press ENTER, with the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys, set the voltage, current or Pt1 00 value (as desired) corresponding to the beginning of the scale S 1 for example $0 \mathrm{~V}, 4 \mathrm{~mA}$ or $0^{\circ} \mathrm{C}$. Press ENTER to confirm.
8) Press PROG and the message F4 appears; press ENTER, with the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys, set the numerical value corresponding to the beginning of the
scale R1 for example $0^{\circ} \mathrm{C}$. Press ENTER to confirm.
9) Press PROG and the message F5 appears; press ENTER, with the $\boldsymbol{\Delta}$ keys, set the voltage or current value (as selected in point 5) corresponding to the end of the scale $S 2$ for example $10 \mathrm{~V}, 20 \mathrm{~mA}$ or $200.0^{\circ} \mathrm{C}$. Press ENTER to confirm.
10) Press PROG and the message F6 appears; press ENTER, with the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys, set the numerical value corresponding to the end of the scale R2 for example $100^{\circ} \mathrm{C}$. Press ENTER to confirm.
11) Press PROG and the message F7 appears; press ENTER, with the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys, set the maximum alarm threshold value L max for the Alarm relay for example $110^{\circ} \mathrm{C}$. Press ENTERto confirm.
12) Press PROG and the message F8 appears; press ENTER, with the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys, set the minimum alarm threshold value L min for the Alarm relay for example $-10^{\circ} \mathrm{C}$. Press ENTER to confirm.
13) Press PROG and the message SP1 appears; press ENTER, with the keys, set the Set value for the first threshold "SET relay H1" for example $40^{\circ} \mathrm{C}$. Press ENTER to confirm.
14) Press PROG and the message SP2 appears; press ENTER, with the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys, set the Reset value for the first threshold "RESET relay HI" for example $45^{\circ} \mathrm{C}$. Press ENTER to confirm.
15) Press PROG and the message SP3 appears; press ENTER, with the $\boldsymbol{\Delta}$ keys, set the Set value for the second threshold "SET relay LO" for example $50^{\circ} \mathrm{C}$. Press ENTER to confirm.
16) Press PROG and the message SP4 appears; press ENTER, with the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys, set the reset value for the second relay "RESET relay LO" for example $48^{\circ} \mathrm{C}$. Press ENTER to confirm.
17) Press PROG and the message S10 appears. Press ENTER, with the keys, set the desired speed of RS232 serial transmission among the following ones: 300, 600, 1200, 2400, 4800, 9600 baud. Press ENTER to confirm.
18) Press PROG and the message FO appears. AT THIS POINT THE CONFIGURATION OF THE INSTRUMENT IS COMPLETE.
19) Connect the input of the instrument, press the ENTER key and the display will indicate the value corresponding to the input signal.

Varying the configuration

To vary a stored parameter at any stage of the program it is sufficient to the step of the program to be changed with the PROG key (F1, F2, F3, etc.). press ENTER and use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys to modify the parameter previously set; press ENTER to confirm, return to FO and press ENTER.
This simple procedure modifies the desired step of the program.

Connection example: active transmitter HD 4817T... with the indicator HD9022

Note
If the ENTER, $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key is pressed independently during operation, the instrument input value (V, mA or ${ }^{\circ} \mathrm{C}$) flashes on the display. To return to normal operation, press the s tor ENTER key independently again.

Error signal

The instrument indicates an error signal in the following cases:
OFL: this appears when the set value of R max is exceeded.
-OFL: this appears when the set value of R min is exceeded.
E1: \quad this appears when the set points $P 1$ and $P 2$ require a resolution of the A/D converter higher than the one available.
E2: \quad this appears when the values of F 7 and F 8 are inverted.
The maximum resolution of the converter is $0.05 \mathrm{mV} /$ Digit, $1 \mu \mathrm{~A} /$ Digit.

Summary of programming steps of HD9022

INPUT mA	INPUT V		
$0 \div 1 \mathrm{~mA}$			
$0 \div 10 \mathrm{~mA}$			
$0 \div 16 \mathrm{~mA}$			
$0 \div 20 \mathrm{~mA}$			
$0 \div 5 \mathrm{~mA}$			
$0 \div 10 \mathrm{~mA}$			
$0 \div 20 \mathrm{~mA}$		$\}$	Input resistance
:---			
$25 \Omega \pm 0,1 \%$			

Programming start. Selects the programming step, F0.
Selects the programming step, F1.
Selects the programming step, F2.

Exit program mode

Allows modification of the variable.

Modifies the variable on display.

Confirms the modification.

Moves to next programming step.

STEP	COMMENT	LIMITS
F0	Press ENTER to exit program mode	
F1	Select type of input: Voltage, current, Pt100	U-A - Pt
F2	Position of the decimal separator	0-0.0-0.00-0.000
F3	Beginning scale value of the input (Voltage, Current, ${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & 0 \ldots .10,00 \mathrm{~V}, 0 \ldots .20,00 \mathrm{~mA} \\ & -200,0 \ldots+800,0^{\circ} \mathrm{C} \end{aligned}$
F4	Beginning scale value of the display	-9999... 19999
F5	Full scale value of the input (Voltage, Current, ${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & 0 \ldots 10,00 \mathrm{~V}, 0 \ldots 20,00 \mathrm{~mA} \\ & -200,0 \ldots+800,0^{\circ} \mathrm{C} \\ & -20 . \end{aligned}$
F6	Full scale value of the display	-9999... 19999
F7	Maximum alarm threshold	-9999... 19999
F8	Minimum alarm threshold	-9999... 19999
SP1	ON Threshold of Set-point HI	-9999... 19999
SP2	OFF Threshold of Set-point HI	-9999... 19999
SP3	ON Threshold of Set-point LO	-9999... 19999
SP4	OFF Threshold of set-point LO	-9999... 19999
S10	Baud rate	$300,600,1200,2400,4800,9600$

Serial interface RS-232C
The HD9022 is equipped with standard serial interface RS-232C which is available on the SUB D male 9-pin connector. The arrangement of the signals on this connector is as follows:

Pin	Signal	Description
2	TD	Datum transmitted by the HD9022
3	RD	Datum received by the HD9022
5	GND	Reference logic ground

The transmission parameters with which the instrument is supplied are:

- baud rate 9600 baud
- parity None
- n. bits 8
- stop bit 1

The data transmission speed may be changed by altering the set-up parameter S10 with the keyboard; the possible baud rates are: 9600, 4800, $2400,1200,600,300$. The other transmission parameters are fixed.

All the messages reaching and leaving the HD9022 must be inserted in a "Communication frame" with the following structure:

```
    <Stx><Record><Etx>
```

Where:
<Stx> Start of text (ASCII 02)
$<$ Record> constitutes the message
<Etx> End of text (ASCII 03)

Host commands

The structure of the command records is as follows:
<Command character><Sub-command><Values>
Where:

$$
\begin{array}{ll}
\text { <Command character> } & \begin{array}{l}
\text { is characterized by an alphabetic character } \\
\text { indicating the set of commands. } \\
\text { is characterized by a character indicating } \\
\text { <Sub-command> }
\end{array} \\
\begin{array}{l}
\text { the type of command. } \\
\text { is characterized by ASCll characters that } \\
\text { depend on the type of command. }
\end{array}
\end{array}
$$

The replies provided by the HD9022 are essentially of two types:
"Information" and "Data"
The former allow information on the status and programming of the HD9022 to be obtained, as well as the diagnosis of the message received; the latter contain data on the channel at the moment the request is made. It is also possible to make use of the serial line for the complete programming of the HD9022, with the exception of the data transmission speed which may be set only with the keyboard.
The diagnostic replies of the HD9022 are composed of the following control characters, sent individually (not inserted in the communication frame):

-ack- Command executed (ASCII 06)
 -nak- Incorrect command (ASCII 15H)

COMMAND A

Sub-command
A Type of terminal
C Company
D Firmware Version
E Firmware Date
F \quad Serial Number
(rd)

COMMAND M

Sub-command 1

RESET COMMAND

(wr)
CHANNEL 1

C1F01 x	Input in
C1F02 x	Point
C1F03 xxxx	Start of scale
C1F04 xxxx	V/I Start of scale
C1F05 xxxx	End of scale

C1F01 x
C1F02 x
C1F04 xxxx Sta Sta
C1F05 xxxx End of scale

$\begin{aligned} & \text { (ASCII 06) } \\ & (\text { ASCll 15H) } \end{aligned}$	
Values stxAFxxxxxxetx	Replies HD9022 DELTA OHM Vxx/Rxx dd/mm/yy xxxxxx ack/nak
Values Measure Channel 1	Replies ack/nak
Values stxRESETetx	Replies ack/nak

V/A/Pt
0/1/2/3
-9999... 19999
0000... 10000 (2000 if I) -9999... 19999
ack/nak ack/nak ack/nak ack/nak ack/nak

C1F06 xxxx	V/I End of scale	$0000 \ldots 10000(2000$ if I)	ack/nak
C1F07 xxxx	Energ. Relay HI	$-9999 \ldots 19999$	ack/nak
C1F08 xxxx	De-energ. Relay HI	$-9999 . .19999$	ack/nak
C1F09 xxxx	Energ. Relay LO	$-9999 . .19999$	ack/nak
C1F10 xxxx	De-energ. Relay LO	$-9999 \ldots 19999$	ack/nak
C1F11 xxxx	Min Relay Alarm	$-9999 \ldots 19999$	ack/nak
C1F12 xxxx	Max Relay Alarm	$-9999 . . .19999$	ack/nak

As regards the command just described, a few remarks must be made: - There is no command character.

- For the other controls of the type C1F01 etc., the present programming status is supplied for the specific command if only the sequence of the sub-command characters is sent.
Ex: StxC1F01Etx Request from Host StxC1F01:1Etx Reply
If the sequence of the sub-command characters is followed by a space and then the desired programming value, the programming of the parameter is produced
Ex: StxC1F01 1Etx Command from Host ack/nak Reply
StxC1F03 1000EtxCommand from Host
ack / nak Reply
StxC1F03-2000Etx Command from Host
ack/nak Reply
StxC1F0512000Etx Command from Host
ack/nak Reply
Note: for programming of the point F03...F12, the value field has fixed length of 5 characters. The first character in the value field may be a space, the minus sign, or the number 1 .

