

HD788TR1, HD788TR1-I, HD786TR1, HD786TR2 HD988TR1, HD988TR1-I, HD988TR2

HD788TR1, HD788TR1-I, HD786TR1, HD786TR2, HD988TR1, HD988TR1-I, HD988TR2

TRASMETTITORI DI TEMPERATURA CONFIGURABILI 4...20 mA PER SENSORI Pt100

HD788TR1, HD788TR1-I, HD786TR1, HD786TR2, HD988TR1, HD988TR1-I e HD988TR2 sono trasmettitori 4...20 mA a microprocessore configurabili per sensori di temperatura al Platino Pt100.

Essi convertono le variazioni di temperatura rilevate mediante un qualsiasi sensore Pt100 standard (100 Ω a 0 °C) in un segnale lineare di corrente a due fili compreso nel campo 4...20 mA.

La linearizzazione con tecnica digitale consente di ottenere eccellente precisione e stabilità.

L'utente può impostare l'uscita 4...20 mA (o 20...4 mA) in un qualsiasi range di temperatura compreso nel campo -200...+650°C con ampiezza minima di 25 °C; la riprogrammabilità si realizza semplicemente operando su un tasto senza necessità di agire su ponticelli, potenziometri, software, etc.

Un led segnala situazioni di allarme (temperatura fuori del range impostato, sensore rotto o in corto circuito) e assiste l'utente nella fase di programmazione. Nei modelli HD788TR1-I e HD988TR1-I l'uscita 4...20mA è isolata galvanicamente dall'ingresso Pt100. I trasmettitori sono inoltre protetti contro le inversioni di polarità.

HD788TR1 e HD788TR1-I sono specificamente progettati per essere installati nelle teste di connessione di tipo DIN B, mentre HD988TR1, HD988TR1-I e HD988TR2 sono adatti per essere inseriti nei contenitori con attacco a barra DIN da 35 mm. HD988TR2 oltre all'uscita 4...20 mA è dotato di un comodo display a 3½ digit (altezza 10 mm) che consente la visualizzazione della temperatura misurata. HD786TR1 e HD786TR2 sono indicati per l'installazione su parete.

Caratteristiche Tecniche @ 25°C e 24 Vdc							
	Tutti i modelli						
INGRESSO							
Sensore	Pt100 (100 Ω at 0 °C)						
Connessione	3 (o 2) fili						
Linearizzazione	EN 60751, IEC 751 BS 1904 (α=0.00385)						
Corrente al sensore	<1 mA						
Campo di misura	-200…+650 °C						
Range di default	0…100 ℃						
Ampiezza minima di misura	25 °C						
Influenza dei fili di collegamento	Trascurabile con fili accoppiati						
Velocità di conversione	2 misure al secondo						
Accuratezza	±0,1°C ±0.1% della lettura (-100+500 °C) ±0,2°C ±0.02% della lettura (-200+650 °C)						
Sensibilità alle variazioni di temp. ambientale	0,01 °C/°C						
Temperatura di funzionamento elettronica	-2070 °C						
Temperatura di magazzinaggio	-40+80 °C						
USCITA							
Uscita	420 mA (oppure 204 mA) 22 mA in caso di errata programmazione o temperatura fuori range (nota 1).						
	Uscita analogica 4 μΑ						
Risoluzione	Per HD988TR2 - Display: 0,1°C fino a 200°C; 1°C oltre 200°C						
Tensione di alimentazione	730 Vdc (protezione contro inversione di polarità)						
Sensibilità variazioni tensione alimentazione Vdc	0,4 μΑ/V						
Resistenza di carico	$R_{LMax} = \frac{Vdc-7}{0.022} \implies R_{LMax} = 770 \Omega @ Vdc = 24 Vdc$						
Led rosso	Si accende in fase di programmazione e quando la temperatura misurata è fuori del range impostato						
Isolamento ingresso-uscita	500 Vdc Solo per i modelli HD788TR1-I e HD988TR1-I						

Nota 1 - Nel caso la temperatura misurata T esca dal range impostato T1...T2 (T1<T2), HD 788TR1, HD 788TR1-I, HD 988TR1, HD 988TR1-I e HD 988TR2 mantengono 4 mA perT<T1 e 20 mA perT>T2 per una banda morta di 10° C prima di andare in errore a 22 mA

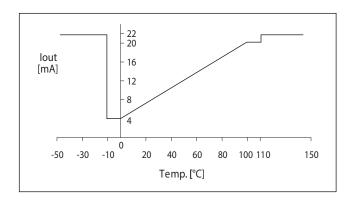


Fig. 1 Range $0...100^{\circ}$ C, corrente di uscita in funzione della temperatura.

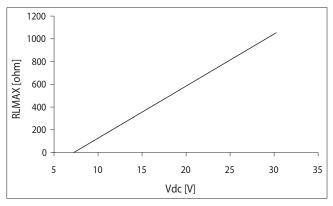
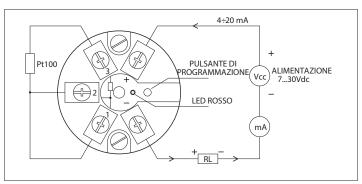


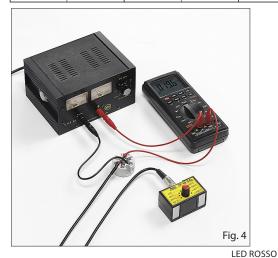
Fig. 2 Resistenza di carico in funzione della tensione di alimentazione.


PROGRAMMAZIONE

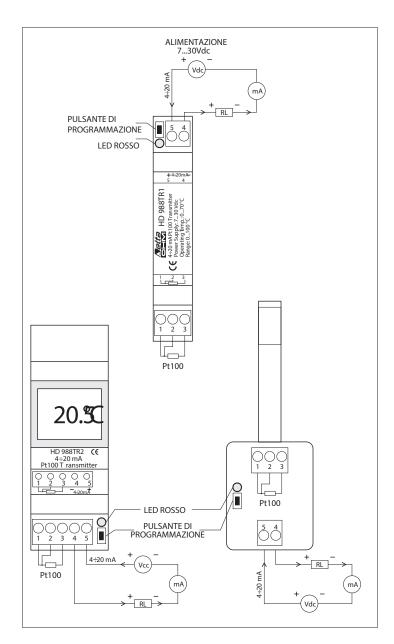
Tutti i trasmettitori sono forniti di default con range 0...100°C, tuttavia l'utente può impostare un diverso range dotandosi dei seguenti accessori:

- sorgente di alimentazione continua 7...30 Vcc,
- calibratore Pt100 oppure set di resistenze di precisione,
- amperometro di precisione con campo minimo 0...25 mA,

e seguendo la procedura:


- 1. Connettere il trasmettitore come mostrato in Fig. 3 e impostare il calibratore Pt100 alla temperatura richiesta per i 4 mA (ad esempio supponendo di voler impostare il range -50...+200 °C, si imposterà il calibratore a -50 °C o equivalentemente si collegherà una resistenza di $80,31\Omega$ tra i terminali 1 e 3 con 1 e 2 in cortocircuito).
- 2. Aspettare 10 secondi affinchè la misura si assesti, quindi mantenere premuto il tasto di programmazione per non meno di 4 secondi, fino a che il LED non lampeggi una volta. Al rilascio del tasto il LED si accende.
- 3. Impostare il calibratore Pt100 al valore di temperatura richiesta per i 20 mA (secondo l'esempio di cui sopra si imposterà il calibratore a +200 °C, o equivalentemente si collegherà una resistenza di 175,86 Ω tra i terminali 1 e 3 con 1 e 2 in cortocircuito).
- 4. Attendere 10 secondi affinchè la misura si assesti poi premere per non meno di 4 secondi il tasto di programmazione fino a che il LED si spenga. A questo punto rilasciare il tastino, cui seguiranno 2 lampeggi del LED. La procedura di programmazione è terminata.
- 5. Verificare che l'impostazione sia rispondente alle specifiche richieste, impostando il calibratore (o collegando le resistenze di precisione) ai valori corrispondenti a 4 e 20 mA e controllando la corrente nell'amperometro.

La Fig. 3 riporta gli schemi di collegamento dei trasmettitori nel loop di corrente. Per ottenere la massima precisione, la connessione al Pt100 deve essere fatta a 3 fili e con fili dello stesso diametro per garantire la stessa impedenza in ciascun collegamento. Con il simbolo RL (load) si rappresenta un qualsiasi dispositivo inserito nel loop di corrente vale a dire un indicatore, un controllore, un data logger o un registratore.


La programmazione del range di temperatura può essere fatta utilizzando delle resistenze di precisione di valore fisso che simulano il valore di un sensore Pt100. A titolo esemplificativo si riportano i valori di resistenza corrispondenti ad alcuni valori di temperatura. (vedi tabella seguente).

°C	Ω	°C	Ω	°C	Ω
-200	18.52	70	127.08	200	175.86
-100	60.26	80	130.90	220	183.19
-50	80.31	90	134.71	250	194.10
-30	88.22	100	138.51	280	204.90
-20	92.16	110	142.29	300	212.05
-10	96.09	120	146.07	350	229.72
0	100.00	130	149.83	400	247.09
10	103.90	140	153.58	450	264.18
20	107.79	150	157.33	500	280.98
30	111.67	160	161.05	550	297.49
40	115.54	170	164.77	600	313.71
50	119.40	180	168.48	650	329.64
60	123.24	190	172.17		

PULSANTI DI PROGRAMMAZIONE

ORDERING CODES

- HD788TR1: Trasmettitore di temperatura configurabile con uscita 4...20 mA. Campo di misura -200...+650 °C, range minimo 25 °C. Configurazione standard 0...100 °C. Sensore Pt100 a 2 o 3 fili. Temperatura di funzionamento elettronica -20...+70 °C. Contenitore circolare dimensioni e connessioni secondo DIN 43760, Ø 43 x h. 22,5 mm.
- HD788TR1-I: Trasmettitore di temperatura isolato galvanicamente configurabile con uscita 4...20 mA. Campo di misura -200...+650 °C, range minimo 25 °C. Configurazione standard 0...100 °C. Sensore Pt100 a 2 o 3 fili. Temperatura di funzionamento elettronica -20...+70 °C. Contenitore circolare dimensioni e connessioni secondo DIN 43760, Ø43 x h. 22,5 mm.
- HD786TR1: Trasmettitore di temperatura configurabile con uscita 4...20 mA. Campo di misura -200...+650 °C, range minimo 25 °C. Configurazione standard 0...100 °C. Temperatura di funzionamento elettronica -20...+70 °C. Contenitore 65 x 58 x 35 mm. Per fissaggio a parete, completo di sonda Pt100 Ø14, L = 90 mm.
- HD786TR2: Trasmettitore di temperatura configurabile con uscita 4...20 mA. Campo di misura -200...+650 °C, range minimo 25 °C. Configurazione standard 0...100 °C Temperatura di funzionamento elettronica -20...+70 °C. Contenitore 65 x 58 x 35 mm. Per fissaggio a parete, completo di sonda Pt100 Ø 3, L = 55 mm.
- HD988TR1: Trasmettitore di temperatura configurabile con uscita 4...20 mA. Campo di misura -200...+650 °C, range minimo 25 °C. Configurazione standard 0...100 °C. Sensore Pt100 a 2 o 3 fili. Temperatura di funzionamento elettronica -20...+70 °C. Contenitore DIN, 1 modulo (17,5 mm) con attacco per barra 35 mm.
- HD988TR1-I: Trasmettitore di temperatura isolato galvanicamente configurabile con uscita 4...+20 mA. Campo di misura -200...+650 °C, range minimo 25 °C. Configurazione standard 0...100 °C. Sensore Pt100 a 2 o 3 fili. Temperatura di funzionamento elettronica -20...+70 °C. Contenitore DIN, 1 modulo (17,5 mm) con attacco per barra 35 mm.
- HD988TR2: Trasmettitore di temperatura configurabile con display a 3½ digit (altezza cifre 10 mm), uscita 4...20 mA. Campo di misura -200...+650 °C, range minimo 25 °C. Configurazione standard 0...100 °C. Sensore Pt100 a due o tre fili. Temperatura di funzionamento elettronica -20...+70 °C. Contenitore DIN, 2 moduli (35 mm) con attacco per barra 35 mm.

GARANZIA

Il fabbricante è tenuto a rispondere alla "garanzia di fabbrica" solo nei casi previsti dal Decreto Legislativo 6 settembre 2005, n. 206. Ogni strumento viene venduto dopo rigorosi controlli; se viene riscontrato un qualsiasi difetto di fabbricazione è necessario contattare il distributore presso il quale lo strumento è stato acquistato. Durante il periodo di garanzia (24 mesi dalla data della fattura) tutti i difetti di fabbricazione riscontrati sono riparati gratuitamente. Sono esclusi l'uso improprio, l'usura, l'incuria, la mancata o inefficiente manutenzione, il furto e i danni durante il trasporto. La garanzia non si applica se sul prodotto vengono riscontrate modifiche, manomissioni o riparazioni non autorizzate. Soluzioni, sonde, elettrodi e microfoni non sono garantiti in quanto l'uso improprio, anche solo per pochi minuti, può causare danni irreparabili.

Il fabbricante ripara i prodotti che presentano difetti di costruzione nel rispetto dei termini e delle condizioni di garanzia inclusi nel manuale del prodotto. Per qualsiasi controversia è competente il foro di Padova. Si applicano la legge italiana e la "Convenzione sui contratti per la vendita internazionale di merci"

INFORMAZIONI TECNICHE

Il livello qualitativo dei nostri strumenti è il risultato di una continua evoluzione del prodotto. Questo può comportare delle differenze fra quanto riportato nel manuale e lo strumento che avete acquistato. Ci riserviamo il diritto di modificare senza preavviso specifiche tecniche e dimensioni per adattarle alle esigenze del prodotto.

INFORMAZIONI SULLO SMALTIMENTO

Le apparecchiature elettriche ed elettroniche con apposto specifico simbolo in conformità alla Direttiva 2012/19/UE devono essere smaltite $separatamente \ dai \ rifiuti \ domestici. \ Gli \ utilizzatori \ europei \ hanno \ la \ possibilità \ di \ consegnarle \ al \ Distributore \ o \ al \ Produttore \ all'atto \ dell'acquisto$ di una nuova apparecchiatura elettrica ed elettronica, oppure presso un punto di raccolta RAEE designato dalle autorità locali. Lo smaltimento lillecito è punito dalla legge.

Smaltire le apparecchiature elettriche ed elettroniche separandole dai normali rifiuti aiuta a preservare le risorse naturali e consente di riciclare i materiali nel rispetto dell'ambiente senza rischi per la salute delle persone.

